Medical Dosimetry

Mission

The mission of the Medical Dosimetry Program offered by Southern Illinois University Carbondale is to provide a quality program integrating education, research and service in order to meet the needs of the profession and improve health care of the people and communities we serve.

Master of Science (M.S.) in Medical Dosimetry

M.S. Medical Dosimetry - Track 1

Program Goals

1. Prepare the student to practice as a competent entry level professional Medical Dosimetrist by offering a comprehensive curriculum and quality didactic/clinical instruction.
2. Provide didactic and clinical experiences that lead to research in educational, professional, or health care issues relating to medical dosimetry.
3. Provide avenues to students for professional development and growth within the profession.
4. Provide avenues for students to develop and apply skills in effective communication necessary for successful medical dosimetry practice.
5. Provide avenues for students to develop and apply skills in critical thinking and problem-solving necessary for successful medical dosimetry practice.
6. Provide a clinical and didactic environment which leads to the development of clinical skills and competence appropriate to an entry level Medical Dosimetrist.

Program Description

The Medical Dosimetrist is a member of the Allied Health and Radiation Oncology Team. Course material and practicum covers radiation physics, radiation protection, dose calculations, tumor localization, external beam treatment planning, brachytherapy, quality assurance, medical imaging/anatomy, clinical radiation oncology, and radiobiology. Clinical practicum includes external beam treatment planning, brachytherapy treatment, preparation and planning, chart reviews and dose calculations, record and verify system data entry, simulation (conventional and CT-simulation), treatment aid fabrication, treatment machine quality assurance, stereotactic treatment planning, gamma knife, IMRT planning and treatment. Special project assignments, conference attendance, written reports, chapter reviews, and labs are also part of the curriculum.

Accreditation

The M.S. in Medical Dosimetry Program is accredited through the Joint Review Committee on Education in Radiologic Technology (JRCERT). The program at SIU was the third program to be accredited in the United States.

The program meets the formal education eligibility criteria for the national certification exam following graduation, as required by the Medical Dosimetrist Certification Board.
General Description of a Medical Dosimetrist

The Certified Medical Dosimetrist (CMD) is a member of the radiation oncology (cancer treatment) team who has knowledge of the overall characteristics and clinical relevance of radiation oncology treatment machines and equipment, is cognizant of procedures commonly used in brachytherapy (treatment with radioactive sources at a close distance) and has the education and expertise necessary to generate radiation dose distributions and dose calculations in collaboration with the Medical Physicist and Radiation Oncologist.

Major Duties

- Design a treatment plan by means of computer and/or manual computation that will deliver a prescribed radiation dose and field placement technique in accordance with the Radiation Oncologist’s prescription to a defined tumor volume.
- Consider dose-limiting structures in the design of treatment plans and document dose in accordance with the Radiation Oncologist’s prescription.
- Coordinate treatment simulations and tumor localization on dedicated devices, including Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET) when indicated, for radiation oncology treatment planning.
- Supervise, perform, or assist in the planning of the fabrication of compensation filters, custom shields, wedges, and other beam modifying devices.
- Supervise, perform, or assist in the planning of the production of moulds, casts, and other immobilization devices.
- Supervise therapy staff in the implementation of the treatment plan including: the correct use of immobilization devices, compensators, wedges, field arrangement, and other treatment variables.
- Perform calculations for the accurate delivery of the Radiation Oncologist’s prescribed dose, document all pertinent information in the patient record, and verify the mathematical accuracy of all calculations using a system established by the Medical Physicist.
- Provide physics and technical support to the Medical Physicist, in radiation protection, qualitative machine calibrations, and quality assurance of the radiation oncology equipment.
- Supervise, perform, or assist in the application of specific methods of dosimetry including ion chamber, TLD, or film measurement as directed by the Medical Physicist.
- Assist in intracavitary and interstitial brachytherapy procedures and in the subsequent manual and/or computer calculation of the dose distributions of these treatments.
- Teach applied aspects of medical dosimetry to students and residents, as assigned.
- Participate in clinical research for the development and implementation of new techniques.
- Participate in continuing education in the area of current treatment planning techniques, and advances in medical dosimetry.

Source: medicaldosimetry.org

Eligibility for the Master of Science Program in Medical Dosimetry Track 1

Preferred candidates are individuals who have a baccalaureate degree and have been trained as a radiation therapist.

Consideration is given to applicants with a bachelor’s degree in the physical or biological sciences without radiation therapy experience.

Number of Students

Due to clinical hour requirements and the number of clinical sites, approximately 25-30 students per year will be allowed at this time.

Application

Applications should be received by January 1st of the year one plans to attend the program. Class selection will occur in February/March.
For more information about admission policies, transfer credit, tuition and fees, refund policies, academic calendars, academic policies, graduation requirements, and student services, please see the Admission Policies, Requirements, and Procedures tab.

Class Location

The program offers education at various clinic sites and didactic education is delivered via distance learning. Live video conferencing equipment is used to allow students to interact with the instructors in real time.

Expenses

- Tuition: Current In-State Graduate Level Tuition and applicable Distance Education Fees.
- Textbooks and Lab Coat: Approximately $500 - $600.
- Living Expenses: Students must find housing on their own. This can vary greatly.
- A Computer, Scanner, and High Speed Internet will be required. Computer and bandwidth specifications will be shared once accepted into the program.

Curriculum

The total curriculum consists of 30 credit hours. Program length is 52 weeks and the students attend classes/clinical for 40 hours per week.

Didactic component is approximately 300 - 350 hours. Clinical component is approximately 1,650 - 1,700 hours. The student will have approximately 2,000 hours of education per year and have 80 hours of vacation.

Fall Semester (Total: 12 credit hours)

- RAD 510: Introduction to Medical Dosimetry (2 CH)
- RAD 515: Medical Dosimetry Clinical I (4 CH)
- RAD 520: The Physics of Medical Dosimetry I (3 CH)
- RAD 525: Seminars in Medical Dosimetry I (3 CH)

Spring Semester (Total: 12 credit hours)

- RAD 530: The Essentials of Medical Dosimetry (2 CH)
- RAD 535: Medical Dosimetry Clinical II (4 CH)
- RAD 540: The Physics of Medical Dosimetry II (3 CH)
- RAD 545: Seminar in Medical Dosimetry II (3 CH)

Summer Semester (Total: 7-13 credit hours)

- RAD 550: Medical Dosimetry Clinical III (2 CH)
- RAD 555: Medical Dosimetry Practice (2 CH)
- RAD 560: Seminar in Medical Dosimetry III (2 CH)

Throughout the M.S. in Medical Dosimetry program, a student must earn a “C” or better in all coursework to continue in the program. In RAD 555, a comprehensive exam is administered in which the student must earn a “B” or better to continue in the program. If a student is removed from the program for academic/performance reasons, they must re-apply for admission to the program.

M.S. Medical Dosimetry - Track 2

Program Goals

1. Provide didactic experiences that lead to research in educational, professional, or health care issues relating to medical dosimetry.
2. Provide avenues to students for professional development and growth within the profession.
3. Provide avenues for students to develop and apply skills in effective communication, analytical and critical thinking and problem-solving necessary for successful medical dosimetry practice.
4. Provide a didactic environment which leads to the development of managerial/educational skills appropriate to a Medical Dosimetrist.

Program Description

The Medical Dosimetrist is a member of the Allied Health and Radiation Oncology Team.

Course material covers radiation physics, radiation protection, dose calculations, tumor localization, external beam treatment planning, brachytherapy, quality assurance, medical imaging/anatomy, clinical radiation oncology, and radiobiology. Special project assignments, journal article reports, and chapter reviews as well as management and education courses are also part of the curriculum.

General Description of a Medical Dosimetrist

The Certified Medical Dosimetrist (CMD) is a member of the radiation oncology (cancer treatment) team who has knowledge of the overall characteristics and clinical relevance of radiation oncology treatment machines and equipment, is cognizant of procedures commonly used in brachytherapy (treatment with radioactive sources at a close distance) and has the education and expertise necessary to generate radiation dose distributions and dose calculations in collaboration with the Medical Physicist and Radiation Oncologist.

Major Duties

- Design a treatment plan by means of computer and/or manual computation that will deliver a prescribed radiation dose and field placement technique in accordance with the Radiation Oncologist’s prescription to a defined tumor volume.
- Consider dose-limiting structures in the design of treatment plans and document dose in accordance with the Radiation Oncologist’s prescription.
- Coordinate treatment simulations and tumor localization on dedicated devices, including Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET) when indicated, for radiation oncology treatment planning.
- Supervise, perform, or assist in the planning of the fabrication of compensation filters, custom shields, wedges, and other beam modifying devices.
- Supervise, perform, or assist in the planning of the production of moulds, casts, and other immobilization devices.
- Supervise therapy staff in the implementation of the treatment plan including: the correct use of immobilization devices, compensators, wedges, field arrangement, and other treatment variables.
- Perform calculations for the accurate delivery of the Radiation Oncologist’s prescribed dose, document all pertinent information in the patient record, and verify the mathematical accuracy of all calculations using a system established by the Medical Physicist.
- Provide physics and technical support to the Medical Physicist, in radiation protection, qualitative machine calibrations, and quality assurance of the radiation oncology equipment.
- Supervise, perform, or assist in the application of specific methods of dosimetry including ion chamber, TLD, or film measurement as directed by the Medical Physicist.
- Assist in intracavitary and interstitial brachytherapy procedures and in the subsequent manual and/or computer calculation of the dose distributions of these treatments.
- Teach applied aspects of medical dosimetry to students and residents, as assigned.
- Participate in clinical research for the development and implementation of new techniques.
- Participate in continuing education in the area of current treatment planning techniques, and advances in medical dosimetry.

Source: medicaldosimetry.org

Eligibility for the Master of Science Program in Medical Dosimetry Track 2

Applicants must be a Certified Medical Dosimetrist and be current with the Medical Dosimetry Certification Board (MDCB). These individuals must also have a baccalaureate degree from an accredited university.
The baccalaureate degree and academic performance must meet the entrance requirements set forth by the Graduate School at SIU. Individuals that have been approved by the MDCB to take their exam may apply to the program but CMD verification must be documented before any classes may be taken.

Number of Students

There is no limit to the number of students accepted for the M.S. in Medical Dosimetry Track 2 program.

Application

Continuous enrollment is allowed for the M.S. in Medical Dosimetry Track 2 program. This means you may start the program in any semester. For more information about admission policies, transfer credit, tuition and fees, refund policies, academic calendars, academic policies, graduation requirements, and student services, please see the Admission Policies, Requirements, and Procedures tab.

Class Location

The M.S. in Medical Dosimetry Track 2 program is offered via distance learning.

Expenses

- Tuition: Current In-State Graduate Level Tuition and applicable Distance Education Fees.
- Living Expenses: Students must find housing on their own. This can vary greatly.
- A Computer, Scanner, and High Speed Internet will be required. Computer and bandwidth specifications will be shared once enrolled.

Curriculum

The total curriculum consists of 30 credit hours. Students may enroll only part time for this program. Suggested Course Sequence for M.S. in Medical Dosimetry Track 2 Students:

Track II students may complete courses within the Masters of Health Administration (MHA) or the Masters in Health Informatics (MHI) to receive a concurrent degree with the Medical Dosimetry degree. Please see the MHA and MHI programs for updated concurrent degree requirements.

Fall Semester

- MHA 511: Fundamentals of Health Care Systems - Odd Years (3 CH)
- RAD 516: Cultural Foundations and Theories of Education - Odd Years (3 CH)
- RAD 520: The Physics of Medical Dosimetry I - Even Years (3 CH)
- RAD 525: Seminars in Medical Dosimetry I - Even Years (3 CH)

Spring Semester

- MHA 531: Human Resources in Health Care - Odd Years (3 CH)
- MHA 536: Strategic Leadership in Healthcare (3 CH)
- RAD 540: The Physics of Medical Dosimetry II - Even Years (3 CH)
- RAD 545: Seminar in Medical Dosimetry II - Even Years (3 CH)

Summer Semester

- MHA 551: Legal and Ethical Fundamentals of Health Care - Even Years (3 CH)
- RAD 556: Individual Research in Healthcare - Odd Years (3 CH)

Throughout the M.S. in Medical Dosimetry program, a student must earn a "C" or better in all coursework to continue in the program. In RAD 555, a comprehensive exam is administered in which the student must
earn a "B" or better to continue in the program. If a student is removed from the program for academic/performance reasons, they must re-apply for admission to the program.

Program Director Contact Information:

Medical Dosimetry Program Director
School of Health Sciences, MC 6615
College of Health and Human Sciences
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-7211
Fax: 618-453-7020

Medical Dosimetry Courses

RAD510 - Introduction to Medical Dosimetry This course introduces the concepts associated with medical dosimetry. Topics include common mathematical approaches, radiation protection, cross-sectional anatomy, common cancers and treatment techniques, QA, and radiation physics. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program. Credit Hours: 2

RAD515 - Medical Dosimetry Clinical I This is the first course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program. Credit Hours: 4

RAD516 - Cultural Foundations and Theories of Education Seminar provides an examination of the historical, social, economic and psychological foundations of allied health education with emphasis given to the nature and role of education and training in preparing for the field of medical education. The objectives of this seminar will allow the student to explore the nature and theories of education, the behavioral aspects of education including the assumptions and practices which underlie education. Special approval needed from the instructor. Credit Hours: 3

RAD520 - The Physics of Medical Dosimetry I This course covers the following topics: Radiologic Physics, production of x-rays, radiation treatment and simulation machines, interactions of ionizing radiation, radiation measurements, dose calculations, computerized treatment planning, dose calculation algorithms, electron beam characteristics, and brachytherapy physics and procedures. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program. Credit Hours: 3

RAD521 - Advance Practice of Radiologic/Imaging Sciences I This course will include a review of the following topics: Radiation physics, radiation biology, anatomy, pharmacology, human diseases/pathology, advanced imaging methods, advanced imaging modalities, and patient care. Credit Hours: 3

RAD525 - Seminars in Medical Dosimetry I (Same as RAD 526) This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program. Credit Hours: 3

RAD526 - Seminar in Radiologic/Imaging Sciences I (Same as RAD 525) This course consists of various seminar/literature reviews associated with the radiologic/imaging sciences. Topics include imaging techniques, technological advances in the radiologic/imaging sciences, patient care trends, and the role of an imaging professional. This course is twenty weeks in length. Credit Hours: 3
RAD530 - The Essentials of Medical Dosimetry This course expands on the essential concepts associated with radiation physics, dose calculations, radiation measurements, external beam and brachytherapy treatment planning, treatment aids, heterogeneities, electron and proton therapies, and IGRT. This course is twenty weeks in length. Prerequisite: A grade of C or better in RAD 510, RAD 515, RAD 520, and RAD 525. Credit Hours: 2

RAD535 - Medical Dosimetry Clinical II This is the second of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Prerequisite: A grade of C or better in RAD 515. Credit Hours: 4

RAD540 - The Physics of Medical Dosimetry II This course covers the following topics: Imaging for radiation oncology, IMRT, stereotactic radiosurgery, special procedures, particle therapy, hyperthermia, and radiation safety. This course is twenty weeks in length. Credit Hours: 3

RAD541 - Advance Practice of Radiologic/Imaging Sciences II This course will continue to cover the same topics that were reviewed in RAD 521 but to a greater level of understanding. Topics include: Radiation physics, radiation biology, anatomy, pharmacology, human disease/pathology, advanced imaging methods, advanced imaging modalities, and patient care. Credit Hours: 3

RAD545 - Seminar in Medical Dosimetry II (Same as RAD 546) This course consists of various seminars associated with radiation oncology. Topics include: imaging techniques, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Credit Hours: 3

RAD546 - Seminar in Radiologic/Imaging Sciences II (Same as RAD 545) This course consists of various seminar/literature reviews associated with the radiologic/imaging sciences. Topics include imaging techniques, technological advances in the radiologic/imaging sciences, patient care trends, and the role of an imaging professional. This course is twenty weeks in length. Credit Hours: 3

RAD550 - Medical Dosimetry Clinical III This is the third course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to ten weeks. During this course students will perform one to two of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is ten weeks in length. Prerequisite: A grade of "C" or better in RAD 535. Credit Hours: 2

RAD555 - Medical Dosimetry Practice This course brings all medical dosimetry concepts and calculations together for a final program exam. Additional topics include radiation biology, knowledge-based treatment planning, professional development, billing/coding, HIPAA, DICOM, infection control, and test taking strategies. This course is ten weeks in length. Prerequisites: RAD 530 and RAD 540 with grades of C or better. Credit Hours: 2

RAD556 - Individual Research in Healthcare This course requires students to complete a research project in the field of healthcare based upon student interest and instructor approval. Each project will have a written paper as a final product and this paper will be submitted for publication, as approved by the instructor, in one of the professional journals within the field of healthcare. Restricted to School of Health Sciences graduate majors. Credit Hours: 3

RAD560 - Seminar in Medical Dosimetry III This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is ten weeks in length. Prerequisite: A grade of C or better in RAD 545. Credit Hours: 2
RAD565 - Independent Study Directed independent study in selected areas of medical dosimetry studies. Special approval needed from the Program Director. Credit Hours: 1-6

RAD593 - Advanced Research Students complete a research project including a special project related to administration in the student's chosen field which meets Graduate School guidelines. Restricted to School graduate majors and School advisor. Credit Hours: 6

RAD601 - Continuing Enrollment This course is required to satisfy the Graduate School's requirement of continuous enrollment and is intended for those students who are enrolled in the program but cannot take a core academic course during a given semester. Prerequisite: Consent of Program Director. Credit Hours: 1

Medical Dosimetry Faculty

McKinnies, Richard, Professor and Interim Director School of Health Sciences, Radiologic Sciences, Ph.D., (R)(T), CMD, Southern Illinois University Carbondale, 2020; 2006. Radiation oncology.

Mobile, Katherine, Lecturer, Radiologic Sciences, M.S., University of Wisconsin LaCrosse, 2011; 2013. Medical dosimetry.

Last updated: 02/01/2024