Medical Dosimetry

Mission

The mission of the Medical Dosimetry Program offered by Southern Illinois University (SIU) is to provide a quality program integrating education, research and service in order to meet the needs of the profession and improve health care of the people and communities we serve.

Track 1

Program Goals

1. Prepare the student to practice as a competent entry level professional Medical Dosimetrist by offering a comprehensive curriculum and quality didactic/clinical instruction.
2. Provide didactic and clinical experiences that lead to research in educational, professional, or health care issues relating to medical dosimetry.
3. Provide avenues to students for professional development and growth within the profession.
4. Provide avenues for students to develop and apply skills in effective communication necessary for successful medical dosimetry practice.
5. Provide avenues for students to develop and apply skills in critical thinking and problem-solving necessary for successful medical dosimetry practice.
6. Provide a clinical and didactic environment which leads to the development of clinical skills and competence appropriate to an entry level Medical Dosimetrist.

Program Description

The Medical Dosimetrist is a member of the Allied Health and Radiation Oncology Team. Course material and practicum covers radiation physics, radiation protection, dose calculations, tumor localization, external beam treatment planning, brachytherapy, quality assurance, medical imaging/anatomy, clinical radiation oncology, and radiobiology. Clinical practicum includes external beam treatment planning, brachytherapy treatment, preparation and planning, chart reviews and dose calculations, record and verify system data entry, simulation (conventional and CT-simulation), treatment aid fabrication, treatment machine quality assurance, stereotactic treatment planning, gamma knife, IMRT planning and treatment. Special project assignments, conference attendance, written reports, chapter reviews, and labs are also part of the curriculum.

Accreditation

The Medical Dosimetry Program is accredited through the Joint Review Committee on Education in Radiologic Technology (JRCERT). The program at SIU was the third accredited program in the United States.

The program meets the formal education eligibility criteria for the national certification exam following graduation, as required by the Medical Dosimetrist Certification Board.
General Description of a Medical Dosimetrist

The Certified Medical Dosimetrist (CMD) is a member of the radiation oncology (cancer treatment) team who has knowledge of the overall characteristics and clinical relevance of radiation oncology treatment machines and equipment, is cognizant of procedures commonly used in brachytherapy (treatment with radioactive sources at a close distance) and has the education and expertise necessary to generate radiation dose distributions and dose calculations in collaboration with the Medical Physicist and Radiation Oncologist.

Major Duties

- Design a treatment plan by means of computer and/or manual computation that will deliver a prescribed radiation dose and field placement technique in accordance with the Radiation Oncologist’s prescription to a defined tumor volume.
- Consider dose-limiting structures in the design of treatment plans and document dose in accordance with the Radiation Oncologist’s prescription.
- Coordinate treatment simulations and tumor localization on dedicated devices, including Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET) when indicated, for radiation oncology treatment planning.
- Supervise, perform, or assist in the planning of the fabrication of compensation filters, custom shields, wedges, and other beam modifying devices.
- Supervise, perform, or assist in the planning of the production of moulds, casts, and other immobilization devices.
- Supervise therapy staff in the implementation of the treatment plan including: the correct use of immobilization devices, compensators, wedges, field arrangement, and other treatment variables.
- Perform calculations for the accurate delivery of the Radiation Oncologist’s prescribed dose, document all pertinent information in the patient record, and verify the mathematical accuracy of all calculations using a system established by the Medical Physicist.
- Provide physics and technical support to the Medical Physicist, in radiation protection, qualitative machine calibrations, and quality assurance of the radiation oncology equipment.
- Supervise, perform, or assist in the application of specific methods of dosimetry including ion chamber, TLD, or film measurement as directed by the Medical Physicist.
- Assist in intracavitary and interstitial brachytherapy procedures and in the subsequent manual and/or computer calculation of the dose distributions of these treatments.
- Teach applied aspects of medical dosimetry to students and residents, as assigned.
- Participate in clinical research for the development and implementation of new techniques.
- Participate in continuing education in the area of current treatment planning techniques, and advances in medical dosimetry.

Source: medicaldosimetry.org

Eligibility for the Master of Science Program in Medical Dosimetry Track 1

Preferred candidates are individuals who have a baccalaureate degree and have been trained as a radiation therapist.

Consideration is given to applicants with a bachelor’s degree in the physical or biological sciences without radiation therapy experience.

Number of Students

Due to clinical hour requirements and the number of clinical sites, approximately 20 students per year will be allowed at this time.

Application

Applications should be received by February 1st of the year one plans to attend the program. Class selection will occur in February/March.
Class Location

The program offers education at various clinic sites and didactic education is delivered via distance learning. Live video conferencing equipment is used to allow students to interact with the instructors in real time.

Expenses

- Tuition: Current In-State Graduate Level Tuition and applicable Distance Education Fees.
- Textbooks and Lab Coat: Approximately $500 - $600.
- Living Expenses: Students must find housing on their own. This can vary greatly.
- A Computer, Scanner, and High Speed Internet will be required. Computer and bandwidth specifications will be shared once accepted into the program.

Curriculum

The total curriculum consists of 30 semester hours. Program length is 52 weeks and the students attend classes/clinical for 40 hours per week.

Didactic component is approximately 300 - 350 hours. Clinical component is approximately 1650 - 1700 hours. The student will have approximately 2000 hours of education per year and have 80 hours of vacation.

Fall Semester (Total: 12 hours)

- RAD 510-2 Simulation and Cross Sectional Anatomy in Medical Dosimetry
- RAD 515-4 Medical Dosimetry Clinical I
- RAD 520-3 The Physics of Medical Dosimetry I
- RAD 525-3 Seminars in Medical Dosimetry I

Spring Semester (Total: 12 hours)

- RAD 530-2 The Essentials of Medical Dosimetry
- RAD 535-4 Medical Dosimetry Clinical II
- RAD 540-3 The Physics of Medical Dosimetry II
- RAD 545-3 Seminar in Medical Dosimetry II

Summer Semester (Total: 7-13 hours)

- RAD 550-2 Medical Dosimetry Clinical III
- RAD 555-2 The Physics of Medical Dosimetry III
- RAD 560-2 Seminar in Medical Dosimetry III

Program Director Contact Information:

Medical Dosimetry Program Director
School of Health Sciences, MC 6615
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-7211
Fax: 618-453-7020

Disclaimer

Content of the program materials is subject to change without notice.
Track 2

Program Goals

1. Provide didactic experiences that lead to research in educational, professional, or health care issues relating to medical dosimetry.
2. Provide avenues to students for professional development and growth within the profession.
3. Provide avenues for students to develop and apply skills in effective communication, analytical and critical thinking and problem-solving necessary for successful medical dosimetry practice.
4. Provide a didactic environment which leads to the development of managerial/educational skills appropriate to a Medical Dosimetrist.

Program Description

The Medical Dosimetrist is a member of the Allied Health and Radiation Oncology Team. Course material covers radiation physics, radiation protection, dose calculations, tumor localization, external beam treatment planning, brachytherapy, quality assurance, medical imaging/anatomy, clinical radiation oncology, and radiobiology. Special project assignments, journal article reports, and chapter reviews as well as management and education courses are also part of the curriculum.

Accreditation

The Medical Dosimetry Program is approved by the Illinois Board of Higher Education (IBHE) and The Higher Learning Commission.

General Description of a Medical Dosimetrist

The Certified Medical Dosimetrist (CMD) is a member of the radiation oncology (cancer treatment) team who has knowledge of the overall characteristics and clinical relevance of radiation oncology treatment machines and equipment, is cognizant of procedures commonly used in brachytherapy (treatment with radioactive sources at a close distance) and has the education and expertise necessary to generate radiation dose distributions and dose calculations in collaboration with the Medical Physicist and Radiation Oncologist.

Major Duties

- Design a treatment plan by means of computer and/or manual computation that will deliver a prescribed radiation dose and field placement technique in accordance with the Radiation Oncologist’s prescription to a defined tumor volume.
- Consider dose-limiting structures in the design of treatment plans and document dose in accordance with the Radiation Oncologist’s prescription.
- Coordinate treatment simulations and tumor localization on dedicated devices, including Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET) when indicated, for radiation oncology treatment planning.
- Supervise, perform, or assist in the planning of the fabrication of compensation filters, custom shields, wedges, and other beam modifying devices.
- Supervise, perform, or assist in the planning of the production of moulds, casts, and other immobilization devices.
- Supervise therapy staff in the implementation of the treatment plan including: the correct use of immobilization devices, compensators, wedges, field arrangement, and other treatment variables.
- Perform calculations for the accurate delivery of the Radiation Oncologist’s prescribed dose, document all pertinent information in the patient record, and verify the mathematical accuracy of all calculations using a system established by the Medical Physicist.
- Provide physics and technical support to the Medical Physicist, in radiation protection, qualitative machine calibrations, and quality assurance of the radiation oncology equipment.
- Supervise, perform, or assist in the application of specific methods of dosimetry including ion chamber, TLD, or film measurement as directed by the Medical Physicist.
• Assist in intracavitary and interstitial brachytherapy procedures and in the subsequent manual and/or computer calculation of the dose distributions of these treatments.
• Teach applied aspects of medical dosimetry to students and residents, as assigned.
• Participate in clinical research for the development and implementation of new techniques.
• Participate in continuing education in the area of current treatment planning techniques, and advances in medical dosimetry.

Source: medicaldosimetry.org

Eligibility for the Master of Science Program in Medical Dosimetry Track 2

Applicants must be a Certified Medical Dosimetrist and be current with the Medical Dosimetry Certification Board (MDCB). These individuals must also have a baccalaureate degree from an accredited university. The baccalaureate degree and academic performance must meet the entrance requirements set forth by the Graduate School at SIU.

Individuals that have been approved by the MDCB to take their exam may apply to the program but CMD verification must be documented before any classes may be taken.

Number of Students

There is no limit to the number of students accepted for Track 2.

Application

Continuous enrollment is allowed for Track 2. This means you may start the program with any semester.

For more information about admission policies, transfer credit, tuition and fees, refund policies, academic calendars, academic policies, graduation requirements, and student services, please see the Admission Policies, Requirements, and Procedures tab.

Class Location

Track 2 is offered via distance learning.

Expenses

• Tuition: Current In-State Graduate Level Tuition and applicable Distance Education Fees.
• Living Expenses: Students must find housing on their own. This can vary greatly.
• A Computer, Scanner, and High Speed Internet will be required. Computer and bandwidth specifications will be shared once enrolled.

Curriculum

The total curriculum consists of 30 semester hours. Students may enroll only part time for this program.

Suggested Course Sequence for Track Two Students:

Fall Semester

• RAD 511-3 Fundamentals of Health Care Systems - Odd Years
• RAD 516-3 Cultural Foundations and Theories of Education - Odd Years
• RAD 520-3 The Physics of Medical Dosimetry I - Even Years
• RAD 525-3 Seminars in Medical Dosimetry I - Even Years

Spring Semester

• RAD 531-3 Human Resources in Health Care - Odd Years
• RAD 536-3 Strategic Leadership in Healthcare
• RAD 540-3 The Physics of Medical Dosimetry II - Even Years
• RAD 545-3 Seminar in Medical Dosimetry II - Even Years
Summer Semester

- RAD 551-3 Legal and Ethical Fundamentals of Health Care - Even Years
- RAD 556-3 Individual Research in Healthcare - Odd Years

Program Director Contact Information:

Scott Collins, PhD, R.T.(R)(T), CMD
Medical Dosimetry Program Director
School of Allied Health, MC 6615
College of Applied Sciences and Arts
Southern Illinois University Carbondale
Carbondale, Illinois 62901
Office: 618-453-7211
Fax: 618-453-7020

Throughout the medical dosimetry program, a student must earn a "C" or better in all coursework to continue in the program. In RAD 555, a comprehensive exam is administered in which the student must earn a "B" or better to continue in the program. If a student is removed from the program for academic/performance reasons, they must re-apply for admission to the program.

Disclaimer

Content of the program materials is subject to change without notice.

Medical Dosimetry Courses

RAD444 - CNS Imaging in MRI 444-3 Central Nervous System Imaging in Magnetic Resonance Imaging. Lecture includes discussion of imaging applications of the central nervous system. Review of related anatomy and common pathologies. Special approval needed from the instructor.

RAD454 - Body Imaging in MRI 454-3 Body Imaging in Magnetic Resonance Imaging. Lecture includes discussion of the imaging applications of the gastrointestinal, genitourinary, hepatobiliary and musculoskeletal systems. Review of related anatomy and common pathologies. Special approval needed from the instructor.

RAD464 - Cardiac Imaging in MRI 464-3 Cardiovascular Imaging in Magnetic Resonance Imaging. Lecture includes discussion of the imaging applications of the heart and coronary arteries. Review of related anatomy and common pathologies. Special approval needed from the instructor.

RAD474 - Advanced MRI Internship 474-6 Advanced MRI Internship. During this clinical internship, the student will be assigned to a selected clinical education center for the entire semester. During this semester, while performing routine MRI procedures, the student will perform MRI procedures of the heart, body, and extremities. Special approval needed from the instructor.

RAD484 - Special Topics in MRI/MRA 484-3 Special Topics in MRI/MRA. Supervised readings of selected topics in MRI. Special approval needed from the instructor.

RAD494 - Independent Study in MRI 494-1 to 6 Independent Study in Magnetic Resonance Imaging. The selection and investigation of a topic related to MRI. Special approval needed from the instructor.

RAD510 - Sim/Cross Sectnl Anat/MD 510-2 Simulation and Cross Sectional Anatomy in Medical Dosimetry. This course covers the conventional and CT simulation techniques used in initiating radiation therapy for cancer patients. Identification of cross-sectional anatomy at different anatomical locations within the human body is also reviewed. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

RAD515 - Medical Dosimetry Clinical I 515-4 Medical Dosimetry Clinical I. This is the first course of a three course sequence. During the three course sequence, students will complete eight clinical rotations...
including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

RAD516 - Cult Found/Theories of Educ 516-3 Cultural Foundations and Theories of Education. Seminar provides an examination of the historical, social, economic and psychological foundations of allied health education with emphasis given to the nature and role of education and training in preparing for the field of medical education. The objectives of this seminar will allow the student to explore the nature and theories of education, the behavioral aspects of education including the assumptions and practices which underlie education. Special approval needed from the instructor.

RAD520 - Physics/Medical Dosimetry I 520-3 The Physics of Medical Dosimetry I. This course covers the following topics: Radiologic Physics, production of x-rays, radiation treatment and simulation machines, interactions of ionizing radiation, radiation measurements, dose calculations, computerized treatment planning, dose calculation algorithms, electron beam characteristics, and brachytherapy physics and procedures. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

RAD521 - Rad/Imaging Sciences I 521-3 Advance Practice of Radiologic/Imaging Sciences I. This course will include a review of the following topics: Radiation physics, radiation biology, anatomy, pharmacology, human diseases/pathology, advanced imaging methods, advanced imaging modalities, and patient care.

RAD525 - Seminars in MD I 525-3 Seminars in Medical Dosimetry I. (Same as RAD 526) This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length. Restricted to admission to the Medical Dosimetry Program.

RAD526 - Seminar Rad/Imaging I 526-3 Seminar in Radiologic/Imaging Sciences I. (Same as RAD 525) This course consists of various seminar/literature reviews associated with the radiologic/imaging sciences. Topics include imaging techniques, technological advances in the radiologic/imaging sciences, patient care trends, and the role of an imaging professional. This course is twenty weeks in length.

RAD530 - Essentials of Medicl Dosimetry 530-2 The Essentials of Medical Dosimetry. This course covers the various quality assurance procedures performed in a radiation oncology department. Also included are various statistics topics to educate the student in becoming a good consumer of medical dosimetry research literature. Professional development, billing/coding, HIPAA, and professional service are also addressed. This course is twenty weeks in length. Prerequisite: A grade of C or better in RAD 510, RAD 515, RAD 520, and RAD 525.

RAD535 - Medical Dosimetry Clinical II 535-4 Medical Dosimetry Clinical II. This is the second of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to eleven weeks. During this course students will perform two to four of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is twenty weeks in length. Prerequisite: A grade of C or better in RAD 515.

RAD540 - Physics Medical Dosimetry II 540-3 The Physics of Medical Dosimetry II. This course covers the following topics: Imaging for radiation oncology, IMRT, stereotactic radiosurgery, special procedures, particle therapy, hyperthermia, and radiation safety. This course is twenty weeks in length.

RAD541 - Rad/Imaging Sciences II 541-3 Advance Practice of Radiologic/Imaging Sciences II. This course will continue to cover the same topics that were reviewed in RAD 521 but to a greater level of
understanding. Topics include: Radiation physics, radiation biology, anatomy, pharmacology, human disease/pathology, advanced imaging methods, advanced imaging modalities, and patient care.

RAD545 - Seminars in MD II 545-3 Seminar in Medical Dosimetry II. (Same as RAD 546) This course consists of various seminars associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is twenty weeks in length.

RAD546 - Seminar Rad/Imaging II 546-3 Seminar in Radiologic/Imaging Sciences II. (Same as RAD 545) This course consists of various seminar/literature reviews associated with the radiologic/imaging sciences. Topics include imaging techniques, technological advances in the radiologic/imaging sciences, patient care trends, and the role of an imaging professional. This course is twenty weeks in length.

RAD550 - Medical Dosimetry Clinical III 550-2 Medical Dosimetry Clinical III. This is the third course of a three course sequence. During the three course sequence, students will complete eight clinical rotations including Brachytherapy, Simulation, Gamma Knife, Treatment Aids, IMRT, External Beam, Physics, Special Measurements and QA. The length of these rotations varies from one to ten weeks. During this course students will perform one to two of these rotations depending on the rotation schedule. While in the clinical setting students will observe and work directly with a medical dosimetrist. Emphasis is given on learning and understanding the role and responsibilities of a medical dosimetrist in the clinical setting. This course is ten weeks in length. Prerequisite: A grade of “C” or better in RAD 535.

RAD555 - Physics Med Dosimetry III 555-2 The Physics of Medical Dosimetry III. This course covers the following topics: MU calculations, point dose calculations and radiation biology. This course is ten weeks in length. Prerequisite: A grade of C or better in RAD 540.

RAD556 - Research 556-3 Individual Research in Healthcare. (Same as MHA 556) This course requires students to complete a research project in the field of healthcare based upon student interest and instructor approval. Each project will have a written paper as a final product and this paper will be submitted for publication, as approved by the instructor, in one of the professional journals within the field of healthcare. Restricted to Medical Dosimetry.

RAD560 - Sem in Medical Dosimetry III 560-2 Seminar in Medical Dosimetry III. This course consists of various seminars/literature reviews associated with radiation oncology. Topics include treatment techniques for various cancers, technological advances in cancer treatment, cancer treatment trends, and the role of a medical dosimetrist. This course is ten weeks in length. Prerequisite: A grade of C or better in RAD 545.

RAD565 - Independent Study 565-1 to 6 Independent Study. Directed independent study in selected areas of medical dosimetry studies. Special approval needed from the Program Director.

RAD593 - Individual Research 593-6 Individual Research. (Same as MHA 593, MHI 593) A research course leading to the completion of a research paper that demonstrates the student’s knowledge of research techniques. Research is based on the selection and investigation of a research topic culminating in a paper satisfying the research requirements for the Master of Science in Radiologic Sciences degree and is in accordance with the policies and guidelines as established by Southern Illinois University Carbondale’s (SIUC) Graduate School. Prerequisite: RAD 556. Restricted to RADS majors or consent of Program Director.

RAD601 - Continuing Enrollment 601-1 Continuing Enrollment. This course is required to satisfy the Graduate School's requirement of continuous enrollment and is intended for those students who are enrolled in the program but cannot take a core academic course during a given semester. Prerequisite: Consent of Program Director.

Medical Dosimetry Faculty

Collins, Kevin Scott, Professor, Ph.D., Southern Illinois University Carbondale, 2011.

Mobile, Katherine, Lecturer, M.S., University of Wisconsin-LaCrosse, 2011.
Other related dosimetry courses are taught by medical physicists on contract.

Last updated: 04/02/2020

Southern Illinois University
Carbondale, IL 62901
Phone: (618) 453-2121

Catalog Year Statement:
Students starting their collegiate training during the period of time covered by this catalog (see bottom of this page) are subject to the curricular requirements as specified herein. The requirements herein will extend for a seven calendar-year period from the date of entry for baccalaureate programs and three years for associate programs. Should the University change the course requirements contained herein subsequently, students are assured that necessary adjustments will be made so that no additional time is required of them.